SANMAC® 304/304L HOLLOW BAR

DATASHEET

Sanmac® 304/304L is an austenitic chromium-nickel steel with improved machinability.

STANDARDS

- ASTM: MT 304, MT 304L
- UNS: \$30400, \$30403
- EN Number: 1.4301, 1.4307
- EN Name: X5CrNi18-10, X2CrNi18-9
- JIS: SUS304TKA

Product standards in applicable parts

- EN 10216-5*, EN 10297-2, EN 10294-2
- ASTM A511
- JIS G3446
- * The leakage test is deferred to the finished component

Approval

JIS Approval No. SE9402 for Stainless Steel Tubes

CHEMICAL COMPOSITION (NOMINAL) %

C	Si Mn	P	And And States and A	Cr	Ni
≤0.030	0.4 1.3	≤0.040	≤0.030	18.5	9

FORMSOF SUPPLY

Hollow bar- Finishes, dimensions and tolerances

Hollow bar in Sanmac® 304L is stocked in various sizes in the solution annealed and white-pickled condition. See catalogues S-110-ENG or S-02909-ENG.

Dimensions are given as outside and inside diameters with guaranteed component sizes after machining, see catalogues.

Outside diameter tolerance is +2/-0%, but minimum +1/-0mm Inside diameter tolerance is +0/-2%, but minimum +0/-1mm Straightness +/-1.5mm/m Other tolerances can be supplied against special order

Other forms of supply Bar

Steel with improved machinability, Sanmac®, is also available in bar.

Filler metal for welding

The sizes listed below are Sandvik stock standard. The local stocks carry sizes in common demand on the market. For technical information on the filler metals please refer to brochures S-2361-ENG and S-2362-ENG.

Welding electrodes and filler wire/rods

Sandvik 19.9.L: 1.60, 2.00, 2.40, 3.00, 3.20 and 4.00 mm Sandvik 19.9.LSi: 0.80, 1.00, 1.20 and 1.60 mm

Covered electrodes

Sandvik 19.9.LR: 1.60, 2.00, 2.50, 3.25, 4.00 and 5.00 mm Sandvik 19.9.LB: 2.50, 3.25, 4.00 and 5.00 mm Sandvik 19.9.LRHD: 3.25, 4.00 and 5.00 mm

MECHANICAL PROPERTIES

For hollow bar with wall thicknesses greater than 10 mm (0.4 in.) the proof strength may fall short of the stated values by about 10 MPa (1.4 ksi).

At 20°C (68°F)

Metric units

Proof strength	Tensile strength	Elong.	Hardness					
Rp0.2ª Rp1.0ª	Rm	Ab A2"	HRB					
MPa MPa	MPa	% %	Startan Startan Startan Startan Startan					
≥210 ≥240	515-680	≥45 ≥35	≤90					

Imperial units

Proof strength		Star Star Star	Tensile strength	Elong.	Hardness
Performance State	Rp0.2ª	Rp1.0a	Rm	Аь А2"	HRB
ksi	Star Star Star	ksi	ksi	% %	
≥3	0 ³	≥35	75-99	≥45 ≥35	≤90

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

a) Rp0.2 and Rp1.0 correspond to 0.2% offset and 1.0% offset yield strength, respectively.

b) Based on L0 = 5.65 Ö S0 where L0 is the original gauge length and S0 the original cross-section area.

Impact strength

Due to its austenitic microstructure, Sandvik Sanmac® 304/304L has very good impact strength both at room temperature and at cryogenic temperatures.

Tests have demonstrated that the steel fulfils the requirements (60 J (44 ft-lb) at -196 °C (-320 °F)) according to the European standards EN 13445-2 (UFPV-2) and EN 10216-5.

At high temperatures

Metric units

سانی <u>کر</u>	Temperature	Proof strength	and a second	Tensile strength	and the second sec
۵۲ <u>-</u> اور	°C	Rp0.2ª	Rp1.0ª	Rm	CT CT CT CT CT CT CT

Start Start Start Start Start	MPa	MPa	MPa Start	Steel" 3
and and and and and	َ min. أَنْ أَنْ أَنْ أَنْ أَنْ أَنْ أَنْ أَنْ	min.	min.	Stern S
50	190	215	480	State 5
100	165	195	450	Star 3
150	150	175	425	Stranger C
200	140	165	400	Station of
250	130	155	390 / / / /	Station
300	125	150	380	Stefrand C
350 🧹 🦿 🏑	J J J 120 J J	145	370	States .
400	and and and a 115 and a	.140	365	Steller
450	త్త్త్ రి 110 త్త	135	355	steiner c
500	۰ 105 × ۵	130	345	Sterner c
550	100	125	325	Steller 3
600	95	120	305	Steffin 2

Imperial units

Temperature	Proof streng	th	Tensile strength	Star Star
°F	Rp0.2ª	Rp1.0ª	Rm	Strain Str
and a second and a second and a second	ksi	ksi	ksi	atofrance ato
and all all all all all all all all a	min.	min.	min.	allestrand allest
200	24	29	66	Stational Stat
400	20 / /	24	58	Stational Stat
600 / / / / / /	18	21	55 / / / / / / / /	States State
800	16 3	.19	52 6 6 6 6 6 6 6 6	Staffaar Staf
1000	15	18	6 48 J J J J J J J J J J J J	Station Stat

PHYSICAL PROPERTIES

Density: 7.9 g/cm³, 0.29 lb/in³

Thermal Conductivity

Temperature, °C	W/m °C	Temperature, °F	Btu/ft h °F
20	15	68	8.5
100	16	200	9.5
200	18	400	10.5
300	20	600	,12
400	22	800	13
500	23	1000	and and a 14 and and a start and
600	25 / /	/ /1200 / / / / /	
700 5 5 5 5 5 5	5 5 26 St 3 .	/ / 1300 / / / / / /	Start Start Start 55.00 Start Start Start

Specific heat capacity

Temperature, °C	J/kg ℃	Temperature, °F	Btu/lb °F
20	475	68	0.11
100	500	200	0.12
200	530	400	0.13
300	560	600	0.13
400	580	800	0.14
500	600	1000	0.14
600	615	1200	0.15
700	625	/ 1300 / / / / /	0.15

Thermal expansion, mean values in temperature ranges (x10- 6)

Temperature, °C	Per °C	Temperature, °F	Per °F
30-100	16.5	86-200	9.5
30-200		86-400	9.5
30-300	17.5	86-600	star star 10° star star star
30-400	s s 18 s s	86-800	and and 10 and and and
30-500	18.5	86-1000	of 10 of of of
30-600	18.5	86-1200	10.5
30-700	. 19	86-1400	10.5

modulus of elasticity, (x 103)	State State	المواسمة المحمو المحمو المحمو المحمو المحمو المحمو المحمون المحمو المحمو المحمو المحمو	
Temperature, °C	MPa	Temperature, °F ksi	Indian
20 3 3 3 3 3	200	68 29.0	feeler é
100	194	200 28.2	500 - 50 - 50
200 200	186	400 26.9	
300	179	600 25.8	and the second
400	172	800 24.7	
500	165	1000 23.5	

CORROSION RESISTANCE

General corrosion

Mo

Sandvik Sanmac® 304/304L has good resistance to:

- Organic acids at moderate temperatures, with the exception of formic acid
- Sulphates, sulphides and sulphites
- Caustic solutions at moderate temperatures
- Oxidizing acids like nitric acid

Stress corrosion cracking

Austenitic steels are susceptible to stress corrosion cracking. This may occur at temperatures above about 60°C (140°F) if the steel is subjected to tensile stresses and at the same time comes into contact with certain solutions, particularly those containing chlorides.

In applications demanding high resistance to stress corrosion cracking, the austenitic-ferritic steels Sandvik SAF 2304®, Sandvik 10RE51 or Sandvik Sanmac® SAF 2205 have higher resistance to stress corrosion cracking than 304L.

Intergranular corrosion Sandvik Sanmac® 304/304L has a low carbon content and therefore good resistance to intergranular corrosion.

Pitting and crevice corrosion

The steel may be sensitive to pitting and crevice corrosion even in solutions of relatively low chloride content. Molybdenum-alloyed steels have better resistance and the resistance improves with increasing molybdenum content.

HEAT TREATMENT

Hollow bar is delivered in heat treated condition. If further heat treatment is needed after further processing the following is recommended:

Stress relieving 850-950°C (1560-1740°F), cooling in air.

Solution annealing 1000-1100°C (1830-2010°F), rapid cooling in air or water.

WELDING

Suitable welding methods for Sandvik Sanmac® 304/304L are manual metal-arc welding (MMA) with covered electrodes and gas-shielded arc welding with the TIG and MIG methods as first choice. Preheating and post-weld heat treatment are normally not necessary.

Due to the fact that this material is alloyed in such a way that it shall have good machinability there can be a higher amount of surface oxides on the weld beads compared to standard 304L steels. This may lead to arc instability during TIG welding, especially at autogenous welding. A correct setting of the welding current is of great importance. However, when filler metal is used, the weldability is the same as for standard 304L steels.

When filler metal is used, Sanmaco 304/304L has the same behavior as standard 304/304L at welding

Since the material has low thermal conductivity and high thermal expansion, welding must be carried out with a low heat input and with welding plans well thought out in advance so that the deformation of the welded joint can be kept under control. If, despite these precautions, it is foreseen that the residual stresses might impair the function of the weldment, we recommend that the entire structure be stress relieved. See recommendations under "Heat treatment".

Recommendations of fillermetal:

	TIG (GTAW/141)			19.9.L or 19.9.LSi.											
leafter a	MIG (GMAW/131)	Strefmann Strefmann	Starting	19.9.L or 19.9.LSi.	Stafest	States	Green a	Stefas	Stefee	Steres	Steres	Sterner	Stafran	Green and	Sterree
and lot of	MMA (SMAW/111)	Staffing Staffing	Sterler	19.9.LR, 19.9.LB or 19.9	.LR	RHD	Stelen	Sterrer .	Steller	Sterre	States	Sterror	Steller.	Sheller.	Station

MACHINING

Sanmac® stands for Sandvik Machinability Concept. In Sanmac materials, machinability has been improved without jeopardizing properties such as corrosion resistance and mechanical strength.

The improved machinability is owing to:

- Optimized non-metallic inclusions
- Optimal chemical composition
- Optimized process and production parameters

Detailed recommendations for the choice of tools and cutting data regarding turning, thread cutting, parting/grooving, drilling, milling and sawing are provided in the brochure S-02909-ENG.

The diagram shows the ranges within which data should be chosen in order to obtain a tool life of minimum 10 minutes when machining austenitic Sanmac materials (304/304L, 316/316L).

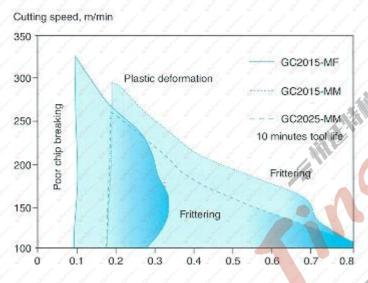


Figure 1. Machining chart Sandvik Sanmac 304L and 316L.

The ranges are limited in the event of low feeds because of unacceptable chip breaking. In the case of high cutting speeds, plastic deformation is the most dominant cause of failure. When feed increases and the cutting speed falls, edge frittering (chipping) increases significantly. The diagram is applicable for short cutting times. For long, continuous cuts, the cutting speeds should be reduced somewhat.

The lowest recommended cutting speed is determined by the tendency of the material to stick to the insert (built-up-edge), although the integrity of insert clamping and the stability of the machine are also of great significance.

It is important to conclude which wear mechanism is active, in order to optimize cutting data with the aid of the diagram.

APPLICATIONS

Sanmac® 304/304L is used for a wide range of industrial applications. Typical examples are: Machined parts for tube and pipe fittings, valves, components for pumps, heat exchangers and vessels, different tubular shafts in chemical, petrochemical, fertilizer, pulp and paper and power industries as well as in the production of pharmaceuticals, foods and beverages.

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Sandvik materials.

